last highlighted date: 2024-01-08
Highlights
- Discovery of what would be considered a medical device by modern standards dates as far back as c. 7000 BC in Baluchistan where Neolithic dentists used flint-tipped drills and bowstrings. Study of archeology and Roman medical literature also indicate that many types of medical devices were in widespread use during the time of ancient Rome.
- Medical device regulation in Europe as we know it today came into effect in 1993 by what is collectively known as the Medical Device Directive (MDD). On May 26, 2017, the Medical Device Regulation (MDR) replaced the MDD.
- “instrument, apparatus, implement, machine, contrivance, implant, in vitro reagent, or other similar or related article, including a component part, or accessory which is:
- recognized in the official National Formulary, or the United States Pharmacopoeia, or any supplement to them
- Intended for use in the diagnosis of disease or other conditions, or in the cure, mitigation, treatment, or prevention of disease, in man or other animals, or
- Intended to affect the structure or any function of the body of man or other animals, and
- Note: how fda describe it
- “instrument, apparatus, appliance, software, material or other article, whether used alone or in combination, including the software intended by its manufacturer to be used specifically for diagnostic and/or therapeutic purposes and necessary for its proper application, intended by the manufacturer to be used for human beings for the purpose of:
- diagnosis, prevention, monitoring, treatment or alleviation of disease,
- diagnosis, monitoring, treatment, alleviation of or compensation for an injury or handicap,
- investigation, replacement or modification of the anatomy or of a physiological process,
- control of conception
- Note: how mdr describe it
- There is no specific definition of the term ‘medical devices’ in Indian law. However, certain medical devices are notified as DRUGS under the Drugs & Cosmetics Act.
- Examples of Class II devices include acupuncture needles, powered wheelchairs, infusion pumps, air purifiers, surgical drapes, stereotaxic navigation systems, and surgical robots.
- Class III devices are usually those that support or sustain human life, are of substantial importance in preventing impairment of human health, or present a potential, unreasonable risk of illness or injury and require premarket approval. Examples of Class III devices include implantable pacemakers, pulse generators, HIV diagnostic tests, automated external defibrillators, and endosseous implants.
- Class Is Devices: Class Is devices are similarly non-invasive devices, however this sub-group extends to include sterile devices.
- Class Im Devices: This refers chiefly to similarly low-risk measuring devices. Included in this category are: thermometers, droppers, and non-invasive blood pressure measuring devices.
- Class IIa Devices: Class IIa devices generally constitute low to medium risk and pertain mainly to devices installed within the body in the short term. Class IIa devices are those which are installed within the body for only between 60 minutes and 30 days. Examples include hearing-aids, blood transfusion tubes, and catheters. Requirements include technical files and a conformity test carried out by a European Notified Body.
- Class IIb Devices: Slightly more complex than IIa devices, class IIb devices are generally medium to high risk and will often be devices installed within the body for periods of 30 days or longer. Examples include ventilators and intensive care monitoring equipment. Identical compliance route to Class IIa devices with an added requirement of a device type examination by a Notified Body.
- Class III Devices: Class III devices are strictly high risk devices. Examples include balloon catheters, prosthetic heart valves, pacemakers, etc. The steps to approval here include a full quality assurance system audit, along with examination of both the device’s design and the device itself by a European Notified Body.
- Medical devices that pertain to class I (on condition they do not require sterilization or do not measure a function) can be marketed purely by self-certification.
- Certified medical devices should have the CE mark on the packaging, insert leaflets, etc.. These packagings should also show harmonised pictograms and EN standardised logos to indicate essential features such as instructions for use, expiry date, manufacturer, sterile, do not reuse, etc.
- Iran produces about 2,000 types of medical devices and medical supplies, such as appliances, dental supplies, disposable sterile medical items, laboratory machines, various biomaterials and dental implants. 400 Medical products are produced at the C and D risk class with all of them licensed by the Iranian Health Ministry in terms of safety and performance based on EU-standards.
- The main difference between the two is that validation is focused on ensuring that the device meets the needs and requirements of its intended users and the intended use environment, whereas verification is focused on ensuring that the device meets its specified design requirements.
- The ISO standards for medical devices are covered by ICS 11.100.20 and 11.040.01. The quality and risk management regarding the topic for regulatory purposes is convened by ISO 13485 and ISO 14971. ISO 13485:2016 is applicable to all providers and manufacturers of medical devices, components, contract services and distributors of medical devices.
- Further standards are IEC 60601-1 which is for electrical devices (mains-powered as well as battery powered), EN 45502-1 which is for Active implantable medical devices, and IEC 62304 for medical software.
- Starting in the late 1980s, the FDA increased its involvement in reviewing the development of medical device software. The precipitant for change was a radiation therapy device (Therac-25) that overdosed patients because of software coding errors. FDA is now focused on regulatory oversight on medical device software development process and system-level testing.
- A 2011 study by Dr. Diana Zuckerman and Paul Brown of the National Center for Health Research, and Dr. Steven Nissen of the Cleveland Clinic, published in the Archives of Internal Medicine, showed that most medical devices recalled in the last five years for “serious health problems or death” had been previously approved by the FDA using the less stringent, and cheaper, 510(k) process. In a few cases, the devices had been deemed so low-risk that they did not they did not undergo any FDA regulatory review. Of the 113 devices recalled, 35 were for cardiovascular issues. This study was the topic of Congressional hearings re-evaluating FDA procedures and oversight.
- Medical device packaging is highly regulated. Often medical devices and products are sterilized in the package. Sterility must be maintained throughout distribution to allow immediate use by physicians. A series of special packaging tests measure the ability of the package to maintain sterility. Relevant standards include:
- ASTM F2097 – Standard Guide for Design and Evaluation of Primary Flexible Packaging for Medical Products
- ASTM F2475-11 – Standard Guide for Biocompatibility Evaluation of Medical Device Packaging Materials
- EN 868 Packaging materials and systems for medical devices to be sterilized, General requirements and test methods
- ISO 11607 Packaging for terminally sterilized medical devices
-
Biocompatibility standards
- ISO 10993 - Biological Evaluation of Medical Devices
- In August 2013, the FDA released over 20 regulations aiming to improve the security of data in medical devices, in response to the growing risks of limited cybersecurity.
- The identification of medical devices has been recently improved by the introduction of Unique Device Identification (UDI) and standardised naming using the Global Medical Device Nomenclature (GMDN) which have been endorsed by the International Medical Device Regulatory Forum (IMDRF).
- A biomedical equipment technician (BMET) is a vital component of the healthcare delivery system. Employed primarily by hospitals, BMETs are the people responsible for maintaining a facility’s medical equipment. BMET mainly act as an interface between doctor and equipment.
- The WHO estimates that 95% of medical equipment in low- and middle-income countries (LMICs) is imported and 80% of it is funded by international donors or foreign governments. While up to 70% of medical equipment in sub-Saharan Africa is donated, only 10%–30% of donated equipment becomes operational. A review of current practice and guidelines for the donation of medical equipment for surgical and anaesthesia care in LMICs has demonstrated a high level of complexity within the donation process and numerous shortcomings.